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Introduction

Sunnybrook Health Sciences Centre (SHSC) stands as Canada's premier trauma hospital, providing
critical surgical care for patients. In the field of surgical care delivery, operating room (OR) scheduling
is vital, exerting a direct influence on staffing and bed utilization. Each day, SHSC guarantees a varying
number of ORs for scheduled procedures. Extra rooms can be made available for emergency cases,
introducing flexibility and complexity to the scheduling process, requiring an adaptable approach for
optimal resource utilization. Currently, the scheduling process is executed manually and so, there is a
pressing need for a solution that combines machine learning (ML) methods with automated scheduling
to optimize the allocation of hospital surgical resources.

Case Type Definition

A Require immediate attention

B/C Require attention soon with some
leeway; may occur after hours

-D Not urgent; do not occur after

hours

Table 1: Case Type Definitions

A key aspect of our project involves predicting the duration of after-hours surgery, particularly for B/C
cases, which have some leeway but still need to be addressed promptly, as described in Table 1. This
predictive feature ensures that adequate resources, such as surgeons and operating rooms, are available
during periods of increased after-hour cases. The current scheduling process at SHSC is not data-driven
and can lead to delays in surgeries and underutilization of resources, particularly in non-elective trauma
cases that may require after hours surgeries. The primary challenge is the lack of a systematic,
automated, and data-driven OR scheduling method. Thus, a comprehensive solution should consider
various factors including available OR time, caseload distribution, and case prioritization. Addressing
this issue requires an implementation that combines ML techniques with automated scheduling
algorithms, ultimately improving surgical efficiency, staff well-being, and patient care. This study has
also received research ethics board approval.

Data

The dataset provided by SHSC contains tabular data of orthopedic surgery and spine trauma cases
spanning from 2012 to 2022. This data came anonymized and preprocessed to include only type B and C
after-hours cases. The available data encompasses the following categories:

1. Decision Support Data: This dataset includes information about cases, including:
o Date



o Day of Week
o Total number of daily cases
o Total time these cases spent in the OR
2. ORNGE Data (Helicopter Patient Transport): This dataset provides insights into helicopter
patient transport services to and from hospitals in Ontario. Sunnybrook receives these cases on
even days of the week.

This historical data is sufficient to forecast future trauma volume. However, studies have shown that
additional features like weather, holidays, and seasonal factors are predictive of daily trauma admissions
[1][2]. For this reason, these were added to the initial dataset to further improve the prediction accuracy.
A more detailed discussion of these key features is shown below:

Key Features

Day of the Week

Hospitals tend to face an influx of cases on the weekends when people have more free time to participate
in leisure activities [1]. On even days of the week, Sunnybrook also receives cases via ORNGE’s air
ambulance service, resulting in increased trauma volume.

Service Differentiation

Orthopedic trauma involving arms/legs and spine trauma at Sunnybrook each require separate predictive
models. Spine trauma volume tends to be noisier, and this separation may ensure more tailored and
accurate predictions that address the unique characteristics and resource allocations of each service.
However, due to time constraints, we chose to analyze both of these together. Future considerations
should explore the development of distinct predictive models for orthopedic trauma involving arms/legs
and spine trauma to enhance the accuracy and applicability of the predictions.

Weather

Weather-related factors such as ice and snow have a major impact on the amount of cases received by
the OR. For example, a study by Vergouwen et al. [2] revealed that the presence of ice on the ground for
three consecutive days resulted in a 19% increase in orthopedic trauma volumes, while same-day snow
resulted in a 15% increase.

To account for this, we pulled historical data from the Government of Canada [3], which provided the
weather from all stations in Ontario. From there, we filtered the stations based on location, and selected
those in the Toronto area. For each of these stations, the data was downloaded, transformed from an
hourly to daily format, and aggregated by date. This was then cleaned to handle null values and merged
with the initial volume dataset provided. The weather data was also visualized to determine if any initial
trends and redundant features were observed (see Appendix A).



Seasonality

Trauma volume exhibits distinct seasonality, with peaks observed during the summer months. A report
on the Relationship between Weather and Seasonal Factors and Trauma Admission Volume Studies,
highlights that July and August experience the highest trauma volume [1]. The time period from May
through September is also often referred to as trauma season by medical professionals [4].

We inferred the influence of seasonality on trauma volume from the date, underlining the importance of
considering temporal patterns in predicting after-hours surgery durations. We also visualized the data to
determine if these trends were easily spottable (see Appendix B).

Holidays

Around the holidays, hospitals see a spike in trauma volume. During this time, people are off of work
and more likely to be traveling and outside of the house, leading to car accidents and other traumatic
incidents requiring a trip to the hospital. Many holidays are also associated with increased alcohol
consumption, which in turn, increases the overall rate of injury. This aligns with conclusions drawn from
our own data exploration as well as the results outlined in a research study conducted at a South Florida
hospital, which found that average trauma volume doubled during holidays like New Year’s Day, Super
Bowl weekend, and Halloween [5].

For this reason, we chose to encode holidays as a separate feature within our dataset (visualizations of
this encoding can be seen in Appendix C). To do so we created a binary encoding where a 1 was
assigned if the date landed on a holiday, was a part of a holiday weekend, or was within 3 days leading
up to and after a holiday, and a 0 otherwise. We decided to incorporate a 3-day buffer surrounding the
holiday to account for its extended impact.

Explored Methods

In this section, we delve into the varied approaches undertaken to optimize after hours trauma surgery
schedules at SHSC. Additional information regarding data splitting can be found in Appendix D.

Regression Models

In the initial stages of our project, we explored the application of various regression models as a baseline
for predicting trauma volume at SHSC. Regression models were selected for their simplicity,
interpretability, and historical effectiveness.

However, as we delved deeper into the complexity and noise inherent in the data, it became evident that
the regression models were not converging effectively. We experimented with a range of regression
models, including linear regression, logistic regression, stochastic gradient descent (SGD), and Lasso
regression. Despite hyperparameter tuning for each of these models, the results were unsatisfactory.



Recognizing the limitations of regression models in capturing the intricate patterns within the trauma
volume data, we made a strategic shift in our approach. Acknowledging that the data exhibited
non-linear relationships and dependencies, we transitioned our focus towards neural networks. This
transition marked a crucial turning point in our methodology, enabling us to explore more sophisticated
and flexible models that could adapt to the dynamic and complex nature of the data.

RNN

Recurrent Neural Networks (RNNs) were investigated as a baseline neural network for trauma volume
prediction. RNNSs are a type of artificial neural network designed for sequential data and tasks that
involve dependencies over time. Their recurrent nature creates a loop in the network, resulting in a form
of memory that is capable of capturing information from previous time steps in a sequence. For this
reason, RNNs are known to be good at capturing complex temporal patterns and can be very effective in
forecasting tasks. Over the course of this project, we explored three different types of RNNs:
Sequence-to-One (Seq20ne), Sequence-to-Sequence (Seq2Seq), and Long Short-Term Memory (LSTM)
networks.

This began with data preprocessing, where relevant features were selected, and the dataset was split into
training and testing sets (see Appendix D). To capture temporal dependencies, sequences of data points
were created, with each sequence representing a window of historical observations. These sequences,
along with the corresponding trauma volume labels, were normalized using MinMaxScaler to ensure
consistent input ranges.

Seq20ne
The first type of RNN we looked at was the Seq20ne architecture, where the model takes in a sequence

of time steps as input and produces a single output. This input sequence gets processed in its entirety
before generating a prediction. Because the intended goal of this project is to predict the overall trauma
volume for an upcoming after-hours period (e.g. tomorrow) based on historical data (e.g. all data up to
and including today), we believed this model to be a reasonable starting point.

Seq2Seq
Next we considered a Seq2Seq architecture, which takes in a sequence as input and outputs a sequence

in response. This type of RNN is typically used for language tasks like text generation and machine
translation. However, given that time series forecasting and language problems are fundamentally very
similar, adopting a Seq2Seq approach is logical, considering the anticipation of conditional dependence
between the generated points. This choice recognizes the dynamic nature of the data, and allows the
model to handle complex mappings between input and output sequences of varying lengths.

After constructing these architectures, feature selection and hyperparameter tuning were done to
enhance the predictions of these two RNNs. Features were chosen based on the research done by
Vergouwen et al. [2], which as mentioned earlier, outlined that weather features like snow and ice are
big predictors of trauma volume, the correlation heat map (Appendix F), and other key features




highlighted by the team at Sunnybrook. As for tuning, grid search was performed on a variety of
hyperparameters including number of epochs, learning rate, the number of hidden layers, and the size of
these layers.

LSTM

In this project, Long Short-Term Memory (LSTM) networks were employed as a key modeling
technique to predict trauma volume during off-hours. LSTMs are a type of RNN designed to capture
long-term dependencies in sequential data. The use of LSTMs is particularly relevant for time series
forecasting, making them suitable for predicting trauma volume, which often exhibits temporal patterns
and dependencies.

The LSTM architecture used in the project was designed with flexibility in mind. It allows for
customization of parameters such as the number of hidden layers, dropout rates, and bidirectional
processing. Hyperparameter tuning was conducted systematically, exploring various combinations of
hidden layer sizes, numbers of layers, dropout rates, bidirectional processing, and learning rates to
optimize the model's performance.

SARIMA

Additionally, we employed the Seasonal Autoregressive Integrated Moving Average (SARIMA) model.
SARIMA builds upon the Autoregressive Integrated Moving Average (ARIMA) framework, which

combines autoregressive (AR), integrated (I), and moving average (MA) components. This foundational
structure allows SARIMA to capture the sequential dependencies and trends within the time series data.

A distinguishing feature of SARIMA lies in its inclusion of seasonality as a parameter [6]. This aspect
proves pivotal for our task, given that after-hour surgery cases exhibit recurrent patterns influenced by
external factors. The consideration of seasonality elevates SARIMA's predictive accuracy, fostering a
more nuanced comprehension of the underlying temporal dynamics. To fine-tune the model, we
meticulously determined the values of the seasonal parameters (P, D, Q) through an in-depth analysis of
the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots of the time
series data, as illustrated in the (see Appendix E). Further optimization involved a grid search for
hyperparameter tuning to minimize the Root Mean Squared Error (RMSE).

In our pursuit of model refinement, we opted to enhance SARIMA's capabilities by incorporating
additional features. Utilizing a grid search methodology and correlation heat map (see Appendix F), we
introduced lags and other pertinent features to augment the model's predictive performance. This
iterative process, encompassing both parameter tuning and feature engineering, aimed at optimizing the
SARIMA model for accurate and robust predictions in the context of after-hour surgery durations.

NeuralProphet

NeuralProphet is an extension of Facebook’s Prophet, which is a widely-used open-source forecasting
tool that is designed for time series data that has strong seasonal patterns. It uses Fourier series



expansions to handle multiple seasonal patterns, and has the ability to seamlessly integrate holidays and
special events. NeuralProphet is an extension of this that leverages neural networks for improved
modeling flexibility in capturing complex patterns as neural networks can learn more intricate
relationships and dependencies making it well suited for trauma data which has nonlinear and dynamic
patterns. It does this by applying an Auto-Regressive Feed-Forward Neural Network (AR-Net) to handle
auto-regressive components in the data which helps capture additional dependencies that go beyond
simple linear trends. Neural Prophet also allows for modeling of future regressors with known values
during the forecast period, which adds an extra layer of sophistication suitable for this problem where
external factors, such as the weather, can have a strong impact on predictions.

Although our data already went through a preprocessing stage, there were some additional steps needed
to prepare the data before using NeuralProphet. First we had to ensure that the date column was in a time
series format with two columns: a timestamp column and a target variable column, which is essential for
NeuralProphet to understand and model the temporal relationships in the data. We were also told that the
COVID period was a time period with lots of anomalies, so we decided to remove it so it would not
disrupt the model’s learning. In the future, it would be interesting to segment the anomalies in the data
and capture the patterns separately to enhance predictions. We also did some feature selection to identify
the relevant external regressors that could influence the predictions by referring to the study done by
Vergouwen et al. [2] as well as additional feature selection techniques such as correlation analysis (see
Appendix F) and mutual information analysis. We split the data into train and test datasets to perform
hyperparameter tuning and optimize the model’s performance (Appendix D). The process explored
various combinations of layer sizes, number of layers, learning rates, various external regressors, and the
number of previous time series steps to include in auto-regression.

Results

Details of final model hyperparameters are shown in Appendix G. We used 3 main metrics, buffer
accuracy, root mean squared error (RMSE) and mean average error (MAE), when evaluating and testing
our models. The descriptions of each are shown in Appendix H.

Model Training

The training buffer accuracies of each model are shown in Figure 1. Buffers of 1 to 6 hours were used,
essentially giving the predictions 2 to 12 hour tolerances respectively. As expected, the accuracy
increases as the buffer length increases, with all accuracies being 90 or higher when buffers are 4 hours
or more. From a resource management perspective, the focus should be on 1 to 3 hour buffers as they are
the most useful in the decision process.

The training RMSE and MAE for each model are shown in Figure 1. The models were optimized on
RMSE since it considers consistency of errors across all predictions. Lower values indicate that the
model's predictions are more closely aligned with the actual values and this consistency is an important



factor in assessing how well the model generalizes to new observations. The RNN Seq2Seq and LSTM
had the lowest RMSE and MAE respectively while LSTM and SARIMA had the highest buffer
accuracies for the 1 to 3 hour buffers.

RNN (Seq20ne) = RNN(Seq2Seq) =LSTM = SARIMA = NeuralProphet RMSE  * MAE
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Figure 1: Model Training Accuracy & Error

Model Testing

The testing buffer accuracies of each model are shown in Figure 2, with the same buffers as training.
Although LSTM had the highest 1 to 3 hour buffer accuracies during training (34.48% , 72.47% , and
85.43% respectively), they fell significantly during testing (19.12%, 43.32%, and 78.02%). SARIMA
maintained similar buffer accuracies, while NeuralProphet’s accuracies increased in testing going from
30%, 46.67%, 71.67% (for 1 to 3 hour buffers respectively) to 23%, 53%, 80%.

RMSE * MAE
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Figure 2: Model Testing Accuracy & Error

The testing RMSE and MAE for each model are shown in Figure 2. All of the models” RMSE and MAE
values increased significantly, other than SARIMA and NeuralProphet, which shows that most of the
models were overfitting. NeuralProphet had the lowest RMSE and MAE values, with minimal
overfitting, as well as higher test buffer accuracies than most models, making it the best choice for
model moving forward.



Discussion

Based on our analysis, NeuralProphet is recommended as the optimal model for predicting the duration
of after-hours surgeries. While each method exhibited strengths, the decision to recommend
NeuralProphet is grounded in its performance, specifically in terms of the lowest Root Mean Squared
Error (RMSE) as seen in Figure 3. The emphasis on optimizing for this metric allows for better
generalization to the data and, consequently, a more reliable predictive model on future data. This
indicates that the predictions of NeuralProphet closely align with the actual values, showcasing a high
level of consistency across all predictions. This can stem from the model’s proficiency in handling time
series data, seasonality, non-linear relationships, irregularities, and unexpected variations in trauma
surgery hours.

RMSE
35

25

15

0.5

0
RNM (Seq20ne) RNN (Seq2Seq) LSTM SARIMA MeuralProphet

Figure 3: RMSE Analysis of Models for After-Hours Prediction

In assessing our project's initial goals and requirements, it is essential to acknowledge both
accomplishments and challenges. Our main barrier to meeting some of our initial requirements was due
to the complexity of our data. This prevented our models from reaching their full potential and made the
identification of trends challenging. Due to the tight time constraints of our project, our team decided to
work with preprocessed data provided by our client. This limited the number of features used and
analyzed as part of this project and could have affected our ability to select optimal features from the
raw dataset.

In addition, it is important to note that other methods tested seemed to overfit, as shown through
comparisons between Figures 1 and 2. The training predictions displayed higher accuracy for these
models, but a drop in accuracy was observed in the test sets. This overfitting trend raised concerns about
the models' ability to generalize effectively to new data. In contrast, Neural Prophet demonstrated
robustness against overfitting, maintaining consistent performance across both training and test sets.
Given more time, addressing and resolving overfitting issues would be a critical first step, as these issues



hold the potential to influence the overall recommendation and reliability of the predictive models in
real-world applications.

The team also had to rescope the project to focus on after-hours as the envisioned volume predictions
with detailed scheduling within the operating hours could not be delivered within the allotted time
frame. These challenges underscore the intricacies of working with complex healthcare data and
emphasize the importance of aligning project scopes with realistic timeframes. Despite these hurdles,
our exploration of advanced modeling techniques yielded valuable insights and laid the foundation for
future research in optimizing trauma surgery schedules.

In terms of ethical considerations regarding our data, various measures were implemented. To safeguard
patient privacy, as mentioned earlier, all provided data was anonymized, a crucial step given the
sensitive nature of patient information. Furthermore, the data we received focused on aggregated metrics
rather than individual patient details, minimizing the risk of inadvertently revealing sensitive health
information.

A good comparison of our results can arise from a previous paper that aimed to predict Total Knee
Arthroplasty (TKA) surgery duration and length of stay [7]. While our project exclusively dealt with
non-elective trauma cases, the earlier study primarily focused on elective cases. This distinction allowed
their results to be more accurate, benefiting from the clearer trends present in elective cases. While the
prior study explored various machine learning models, including deep Multilayer Perceptrons (MLPs),
both approaches recognized the importance of time-series forecasting. In our project, time-series
forecasting was implemented through SARIMA and NeuralProphet in a comparable context. Both
projects underscore the intricate balance between model sophistication, ethical considerations, and the
complexities associated with predicting surgery durations based on preoperative factors.

Overall, this project is highly beneficial to SHSC and the broader healthcare industry. As a leading
trauma hospital, SHSC faces challenges in manual operating room (OR) scheduling. This not only
fulfills SHSC's immediate need for efficiency but also sets a precedent for the industry, demonstrating
the impactful integration of ML in healthcare. The project's automated, data-driven approach enhances
surgical efficiency, improves staff well-being, and elevates patient care, making it valuable to both the
client and the industry at large.

Implementation

This section outlines the key steps and challenges involved in implementing a predictive model for
trauma volume at SHSC. The proposed approach leverages real-time weather data and other relevant
features to forecast trauma volume and recommends the scheduling/opening of Operating Rooms (OR)
based on predictions.

To implement the proposed model, SHSC would need a robust system for scraping real-time data,
especially weather data. This involves setting up data retrieval mechanisms capable of continuously



collecting information on weather conditions and other relevant features. Integration with reliable APIs
or data sources would be essential to ensure the availability of up-to-date and accurate data. In addition,
ensuring that the scraped data is in the correct format for model input is crucial. This involves
preprocessing steps such as encoding categorical variables, scaling numerical features, and handling
missing data. The model's performance is highly dependent on the quality and consistency of the input
data, making thorough preprocessing an integral part of the implementation process.

Conclusion and Future Directions

In conclusion, our project at SHSC aimed to address the critical issues in trauma surgery scheduling,
leveraging machine learning models to optimize resource allocation. After a thorough evaluation of
various models, we recommend NeuralProphet as the most suitable model for predicting the duration of
after-hours surgeries, evident from its lowest RMSE score among the tested models. Despite facing a
scoped-down project and a tight timeline, we successfully met the deliverables, providing valuable
predictions for after-hours surgery durations. However, we do acknowledge that the model's accuracy is
not optimal, as there were constraints in fully implementing and refining it within the given timeframe.

Moving forward, our project presents several avenues for refinement and expansion. While we
successfully utilized preprocessed data from Sunnybrook for our predictions, exploring more of the raw
data and incorporating further features into the model could offer a more nuanced understanding of
contextual influences on after-hours surgery durations, thus enhancing the model's predictive
capabilities. Anomaly detection also stands out as a crucial enhancement for our predictive model,
particularly given the inherent noise in time-series data. As time-series data can be susceptible to
irregularities, implementing robust anomaly detection algorithms would further fortify the model's
resilience against unexpected events or outliers. The exploration of stacked models is another promising
avenue for future development. By combining the strengths of the various models used, we can leverage
the unique capabilities of each model, capturing complex temporal patterns and improving overall
predictive performance. Finally, addressing the specific characteristics of orthopedic and spine trauma
cases is paramount for accuracy. In future iterations, we propose fully separating orthopedic and spine
trauma cases within the database. Recognizing that spine cases exhibit less of a trend, isolating them
from the broader dataset ensures that the model provides accurate and tailored predictions for each type
of trauma.

While our project achieved significant milestones within the established constraints, these future
directions outline a comprehensive roadmap for refining and expanding our predictive model at
Sunnybrook. These enhancements, coupled with ongoing iterations, aim to foster a more precise and
adaptive system, ultimately contributing to the optimization of trauma scheduling and the continual
improvement of patient care.
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Appendix A: Weather Data Visualizations
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As seen here, weather has clear annual trends that can help determine after hour case predictions.
Additionally, the heatmap shows that features such as mean temperature and min temperature are
extremely correlated, and so it may help to remove one of them during feature selection to avoid
redundancy.



Appendix B: Seasonality Visualizations

Trend and Seasonality
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As seen above in the boxplot, there tends to be a higher volume of trauma cases in the summer months

on average and you can see this trend continuing year after year in the trend and seasonality graph as
well.



Appendix C: Holiday Data Visualizations

Average Hospital Cases on Holiday vs Non-Holiday Days
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As seen here, the number of hospital cases, especially in the months of July and October are much
higher on holidays than others (note: marked holidays in these months include Canada Day and
Thanksgiving). Generally as well, the average number of hours in after hour cases are overall slightly
higher than non-holiday days.



Appendix D: Data Splitting Methods

Model Data Splitting Method
RNN Seq20ne
RNN Seq2Seq from sklearn.model selection import train_test split
RNN LSTM test_size=0.2, random_state=42, shuffle=False
SARIMA
NeuralProphet from neuralprophet import NeuralProphet

freq="D", valid p=0.2

from sklearn.model selection import train test split

Parameters:

Returns:

*arrays : sequence of indexables with same length / shape[0]
Allowed inputs are lists, numpy arrays, scipy-sparse matrices or pandas dataframes.

test size : float or int, default=None
If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split.
If int, represents the absolute number of test samples. If None, the value is set to the complement of the train
size. If train_size is also None, it will be set to 0.25.

train_size : float or int, default=None
If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split.
If int, represents the absolute number of train samples. If None, the value is automatically set to the
complement of the test size.

random_state : int, RandomState instance or None, default=None
Controls the shuffling applied to the data before applying the split. Pass an int for reproducible output across
multiple function calls. See Glossary.

shuffle : bool, default=True
Whether or not to shuffle the data before splitting. If shuffle=False then stratify must be None.

stratify : array-like, default=None
If not None, data is split in a stratified fashion, using this as the class labels. Read more in the User Guide.

splitting : list, length=2 * len(arrays)
List containing train-test split of inputs.

New in version 0.76: If the input is sparse, the output will be a scipy.sparse.csr_matrix. Else, output type is
the same as the input type.



https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

from neuralprophet import NeuralProphet

split_df(df: pandas.core.frame.DataFrame, freq: str = 'auto', valid_p: float =
0.2, local_split: bool = False)

Splits timeseries df into train and validation sets. Prevents leakage of targets.
Sharing/Overbleed of inputs can be configured. Also performs basic data checks and fills in
missing data, unless impute_missing is set to False.

PARAMETERS

« df (pd.DataFrame) — dataframe containing column ds, y, and optionally**ID** with all
data

« freq (str) -
data step sizes. Frequency of data recording,
Note
Any valid frequency for pd.date_range, such as 5min, D, MS or auto (default) to automatically set

frequency.

« valid_p (float) - fraction of data to use for holdout validation set, targets will still never
be shared.

« local_split (bool) — Each dataframe will be split according to valid_p locally (in case of
dict of dataframes

RETURNS
training data
validation data

RETURN TYPE
tuple of two pd.DataFrames


https://neuralprophet.com/code/forecaster.html#neuralprophet.forecaster.NeuralProphet.split_df

Appendix E: Exploring Model Parameters in SARIMA

Autocorrelation Function (ACF) for Seasonal Lags
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Partial Autocorrelation Function (PACF) for Seasonal Lags
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Appendix F: Feature Correlation Heat Map Analysis
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Appendix G: Tuned Hyperparameters for Each Model

Model Tuned Hyperparameters

RNN Seq20ne | hidden size: 128
num layers: 2
learning rate: 0.001
num epochs: 50

RNN Seq2Seq hidden size: 32
learning rate: 0.01

RNN LSTM hidden size: 32
num layers: 1
dropout: 0.2
bidirectional: False
learning rate: 0.01

SARIMA p (autoregressive order): 2

d (integration order): 0

q (moving average order): 0

P (seasonal autoregressive order): 2
D (seasonal integration order): 0

Q (seasonal moving average order): 0
s (seasonal period): 12

NeuralProphet model = NeuralProphet(
yearly seasonality="auto',
weekly seasonality="auto',
daily seasonality="auto',
n_lags=21,
ar_layers=[8,8]

)

model.add country holidays(country name='Canada', mode="multiplicative')
model.add lagged regressor([TOTAL RAIN',TOTAL PRECIPITATION'MEA
N_TEMPERATURE'])




Appendix H: Evaluation Metrics

1.

Buffer Accuracies: Percentage of predictions where the observation values fall within a time
frame that is +/- the buffer from the prediction value. We used multiple different buffer lengths to
allow more leniency with our predictions to account for the uncertainty associated with
predicting hours.

Suppose we have an observed target value set Y and a predicted set Y, the buffer accuracy for a specific buffer b can
be defined as:

1 S l’ly\i_yi|§b
BA(")‘N(Z{O, 5l > b

i=1

Where N is the size of the target value set

Root Mean Squared Error (RMSE): Average magnitude of the errors between predicted values
and actual values. RMSE is sensitive to outliers so instances where the predicted time
significantly deviates from the actual time will have a big impact, which happens often in the
highly varying trauma data.

N ~ 2
— L —
RMSE = m El . y)

Mean Average Error (MAE): Average of the absolute differences between the actual and
predicted value. Each prediction error contributes equally to the overall error, which provides a
robust indication of predictive performance.

N
=L oo
MAE = NEl |yi yi|



